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ABSTRACT

It is well known that the Rayleigh approximation to extinction, scattering and
absorption efficiencies for spheres is limited to small size parameters, z, and small values
of {m|z, where m is the complex index of refraction. It is also known that the Thomson
approximation to these same efficiencies is valid for small z and m = o0c. We have established
an exact transform of the Mie coefficients, for both spheres and infinite cylinders, that
removes the m related restrictions of the Rayleigh and Thomson approximations. The
resulting series for spheres and infinite cylinders are valid for all m and small z. This
transform can also be applied in an approximate form to spheroids.

RESUME

L’approximation de Rayleigh pour [efficacité d’extinction, de diffusion et
d’absorption des sphéres est limitée aux petites valeurs du paramétre de taille, z, et aux
petites valeurs de |m|z, m étant indice de réfraction complexe. L’approximation de Thom-
son est de son coté valide pour les petites valeurs de z et m = oc. Nous avons établi une
transformation exacte des coefficients de Mie pour les sphéres et les cylindres infinis qui
fait disparaitre ces restrictions sur la valeur de m dans les approximations de Thomson
et Rayleigh. La série qui en résulte est valide pour tout m, r demeurant petit. Cette
t1. asformation peut aussi s’appliquer aux sphéroides mais d’une maniére approximative.
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EXECUTIVE SUMMARY

Any complex military system or scenario that involves electro-optical devices
requires understanding the propagation of radiation through natural aerosols and
smokes/obscurants. Given present and future electro-optical capabilities of fire-control sys-
tems, full spectrum obscurants will be required as effective countermeasures. Ii is well
known that spherical particles obscure efficiently in the visible region of the spectrum. It
is also well known that, in the near and far infrared, as well as the microwave region of
the spectrum, the use of nonspherical particles is mandatory. The most efficient ubscurants
generally require that the obscuring particles be made from highly refractive materials (for
example, metals).

This work considers the calculation of the extinction efficiency from small, non-
spherical particles (by small particles we mean that the particle size is small relative to
the wavelength). It has two main objectives. The first is to extend the calculation to
previously inaccessible parameter domains and the second is to significantly reduce the
computational burden. This would allow the full exploration of the eflects of these particles
on the performance of obscurants and on electromagnetic propagation.

To date the theoretical exploration of the effect of these types of particles on the
performance of obscurants has been either extremely restrictive or prohibitively expensive.
This work partially overcomes these restrictions and will aid in the design and performance
analysis of potential new obscurants using high-refractivity materials.

The electromagnetic extinction through rain, carbon smoke or other nonspherical
atmospheric aerosols can also be evaluated by this approach. This is an essential first step
in the evaluation of the performance of all electro-optical systems.

The long-term goal of this work is to alleviate the remaining constraints in the
theoretical consideration of nonspherical aerosols and obscurants of both natural and ar-
tificial origin. This will not only aid in finding better obscurants but also in the possible
identification and remote classification of such aerosols.
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1.0 INTRODUCTION

If a particle is geometrically and optically small enough, then sirnple formuolae can
usually be found for the extinction and scattering efficiencies as well as the phase function.
Such approximate formulae are usually called the Rayleigh approximation (Refs. | and 2). If
the particle is still geometrically small but optically very large, the Thomson approximation
results (Ref. 3). Often, however, a geometrically small particle may be neither optically

small nor very large. This creates a gap that has not been completely filled.

In this report we first demonstrate a transform that bridges this gap ©r spheres and
infinite cylinders. If this transform of the Mie coefficients and their series expansion were
limited to spheres and infinite cylinders, it would have only theoretical interest. However,
this transform generalizes, in an approximate form, to other convex bodies when a Rayleigh
or Thomson-like series can be obtained. These can sometimes be obtained by a method
given by Stevenson in 1953 (Ref. 4). Series are available in this document for ellipsoids
(which include spheroids). We will present results of a comparison between the newly

obtained series and the exact codes for spheres and spheroids.

This work was performed at DREV between March and October 1991 under PSC

32A, EO/IR Protection of Land Vehicles.
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2.0 THEORY

We will first derive the general expansion of the Mie coefficients for small size

parameters r, and show how the Rayleigh and Thomson expressions result.

2.1 Spheres

Starting with the definition (Ref. 2) of Q.o and Q.st, the scattering and extinction

efficiencies, respectively, we have

Quea = 23 220+ Dllanl? + 1627}, )
n=1
and
Qeer = 25 (204 D{Re{r. + b}, )
n=1

where a,, and &, are the external field Mie coefficients. These Mie coeflicients are given by

o VEU(EE) n(z) - VEUn(T) ¥ (a) 3
" B E) (al2) — Ve Unl iR T) Ca(2)

and

b = \/Ed’;;(\/f—ﬁx)’fl)n(z)_ﬁwn(\/‘?x)‘w;(f) (4]
N R ) Cal®) — VRO R D) C(E)

where € and pu are the relative dielectric constant and the relative magnetic permeability,
¥, is the Riccati-Bessel function of the first kind and {, is the Riccati-Bessel function of
the third kind. Note that the b, coefficients are symmetrical with the a, coefficients upon

substitution of ¢ for p and vice versa. Hence, we need only discuss q, in detail.
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Expanding @, and a; in small  we obtain

2. fe~1\ 3 1. [ —6e+4+ u) 4(e-1>‘2 6
°"§'(e+2)x +5’( (e + 22 Tralayz) ?
—l—i Au? 4+ S(9u? 4 354 — 25) — 2(T0u + 150) + 200(2¢ — 1) 4
175 (e +2)° -

+

b, = ay, € & p.

Expansions for higher order coefficients can also be derived. The classic Rayleigh approxi-

mation gives (¢ = 1, m? = ¢u),

2. (m2=1Y) 5. 2. ((m-1m-2)\ 5 4(m*-1\" ¢
ax-gz(————-m2+2)x -rgz( (m? + 2)2 }z +§ iy 2 T

R (m? — 1)(m® + 20m* — 200m? + 200) o7
175 (m? +2)3

+

— 1. 2 5
by = 45z(m Dz’ +.... (8]

The Thompson approximation gives (¢ — oo, p = 0),

_2,3 1.5 4 6 1,7
a; = 31:1: +5n: +91' ,Zw + ..., [9]
1, 1.
by = -—511‘3 -+ "5-115 + ... [10]
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It is immediately apparent that as m — oo the Rayleigh expancion for either a; or b,
does not converge even for small values of . Hence, the requirement for small optical
size Jmz|. The Thomson expansion, having no index dependency, applies only to infinite
optical size. The problem with the Rayleigh series mathematically arises from the terms
in a, with €2y and in b, with u?e. If these terms were set to zero, the divergence problem
would disappear. We must, however, recover the lost information without reintroducing the

divergence problem.

To do this rewrite a, to isolate the material properties as

bn(z) — { LY v () -
n Yn ‘pr ’

o) - { e o)

Consider the result of letting z — 0 in the above expression (which will make all the ¢*u

a

terms zero along with others),

i = $2) = () wht)

u—0 () = {551 Ghla)

(12}

To recover the full Mie coefficients, replace ¢ in the above limit by

L Vet D) ¥n(VET) _ 03]
VE oz Yierz) )

and by symmetry,

o VE(A D IED)

Ve e dlvan) T o

Both &, and U, can be considered as transformed material properties. Putting these new

variables back into [12] and expanding in small z, as if £, and U, were independent of z,
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we obtain,

__2. 81-1) 3 1. 512"‘65)'1"4 sAé(gl'—l)z &
“‘"3'(£,+2 T TG T to\g 12 T

—— 1?
72 ( (gl + 2)3 z + ) { ")}
1. (E-1Y ;

= - 16
% 15’(2&4»3)1 oo 116}
and again by symmetry,
b, = a,, &, ~ U,.
Note singularities occur if and only if
En=—(n+1)/n, {17]
and
U, = —=(n + 1)/n, {18]

which requires a real ¢ (or real u). For all other values of £ and U the coefficients of series
[15] and [16] are finite to all orders of z. Thus [15]) and [16] are valid for all nonreal values of
the refractive index. However, when the conditions [17] and [18] are nearly satisfied, many
terms in [15] and [16] will be required before the series converges to a given accuracy. For

convenience in computations we can rewrite £, as,

_2%F 31 +3F)

&= -ayFy (o) = 56 —Fa o )
with

F(z) = ZCOt(;):“l’v and z = feuz = (n - ik)z, [20]
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and

un = gn,f - j.

Since the ‘Mie’ coefficients for the normal incidence infinite cylinder (Ref. 2} are
identical to the sphere Mie coefficients, apart from the order of the Bessel functions involved,
the same procedure can be used to obtain a series for small particles independent of mate-
rial properties. Oblique incidence can also be done but generates much more complicated

expressions.

2.2 Spheroids

The above series [15] etc. by itself is interesting only from the classic nature of
the Rayleigh and Thomson series. However, the idea of transforming a Rayleigh-like series,
{with the optical size constraint) into a series that is independent of the material properties,
for many types of regular particle shapes, would be of practical use. We show here that this

can be achieved, to some approximation, with oriented and randomly oriented spheroids.

The Rayleigh approximation (with arbitrary p) for oriented spheroids (Refs. 4 and
5), Qray, is given by

Qray = Qsca + Qabs, [2”

where

%
~
~

{52 (1) + 50 4 ) )

&ca —

Wi oo
°|
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br sin?@ 1+ cos?d ,
Qabs = i R,e{l[ 5= (m+m) + g———-—é——-—«)— (2 + 1) } } [24)

and where

p= Vcost + rsin?#, a=2rafl, b=2r3/A

t

Here r = a/b is the aspect ratio {for prolates » > 1 and for oblates 7 < 1), a is the length of
the semi-axis of rotation, § is the other semi-axis of the spheroid, 8 is the angle between the

incident radiation and the a (or a axis), and A is the wavelength of the scattered radiation.

Furthermore,
1 1
m=———— and 75} = , (25
3Ly + ) LU+ ) =
" 1 ’ 1 126]
T bbbt s o N }
STy ppra Ty P ‘
and the form factors are defined for prolates (i.e. r > 1) as
_ =49 1. /l+g .
LI-T{—I+§;IH(1~Q)}, {2(]
1-L
Ly =——, (28]
1
2 .
For oblates (i.e. 7 < 1) we have
L 1+ f2 tan~! f
1= {- ; 1, (30]
1-1L
L? - 9 1, {31}
1
fr= -1 (32]
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Normally, p = | in the above equations ana hence 5} and 7}, are both zero, The procedure,
as demonstrated for spheres, requires the full expression for the efficiencies, therefore we

retain the y terms.

Since th> scattered wave at large distances from finite convex boudies can be ap_rox-
imated by a series of Riccati-Bessel functions, we will use the same material transforms,
113} and {14]. but with the arguments modified. Furthermore these transforms will be angle
independent to first order. This can be understood by considering that the tirst mode can
be excited in any resonant phenomena without regard to the direction of the triggering

energy. This is re .dily verified by using an exact infinite cylinder scattering code.

The modification is simply an approximation to the effective aptical size, . of the
spheroid. We want a simple formula *hat will give the sphere material transform when
r = 1 and gives the emipirically derived asymptotes {of Z/b) as either r — ac or r — 0. It
can be shown formally (Refs. 7 and 8) that the n; and 7. termis come from different vector
splhieroidal wavefunctions. This implies that we will have, for either prolates or oblates, two
different expressions for Z. Using the T-matrix method (Ref. 6) we have empirically derived

the following expressions:

Vb1 + v (1 -1/r%) prolates

F= for 1, and [33]
Vepb (r2)v oblates
VERL(1 +v13(1 — 1//7)) prolates

z= for n; 134)

\/5;76(\/?)"” oblates
where v = /3/10.
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when [33] and {34 are used in the final formalism, the positions of the

first two polaritons are well modelled from 0.1 < r < 20.

For randomly oriented spheroids the cross sections C,., and (',; . must be integrated

over all angles. C,., is just [22] multiplied by 7pb? and similarly for Cyy, from {23]. The

efficiencies are then obtained, in the usual way, by normalizing the cross sections by the

average projected area. The integration is simple since 0y, %], 72 and 7; are independent of

the orientation angle. Replacing ¢ with £(Z) and p with U (Z), integrating C,., and Cys,

over sin(#) df from 0 to /2 and then normalizing we get

and

and for oblates,

and

Remember that in

Z.

Quen = LT (i 4 00 + 2 (4l + 1707) (35]

ral Sbr o g oy ] 0 (> =4
Qus.=§§-Re{z{m+m +2 (7 + 1))}, [36)

2 2
- r -1 réi—1 -
A=1+ rz._lsm ( - ), 137
—_ 2 Vi- 72
—1+ r In 1+vVi-r ’ [38]
v1-r2 r
= s 39
Ty Apr wy L Ty =) 139]
~ i 1
2 iy = [40)

T 3L+ gy) L2+ g)

the expressions for £; and U, [13] and [14], \/€z must be replaced by
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3.0 RESULTS OF COMPARISON

In this chapter we will demonstrate the accuracy and utility of the expressions and
ideas in the preceding chapter. First, we will discuss the comparison of the Rayleigh {7],

Thomson {9] and our new series {15] with the exact Mie solution.

Figure 1 shows the three series normalized by the Mie calculation as a function of
size parameter. The series for Q,., are calculated to fourth order in z and for a refractive
index of 500 — 5007 which corresponds to metals in the millimeter wave region. When |muz]|
is small both the Rayleigh and the new series are excellent approximations. As expected
the Thomson series overestimates Q,., by 25%. The situation reverses when |maz| is very
large. Now the Rayleigh series underestimates Q,., by 25%. Note, however, that in the

intermediate range of |mz|, [15] is still excellent.

The next figure, Fig. 2, shows, for the same index as above, the comparison of the
Mie solution of {5 with the new approximation and the Rayleigh series. Now the discrep-
ancies between Rayleigh and Mie are quite obvious. This large discrepancy is obviously due
to absorption (for more details, see Ref. 1, p. 292). This effect is well modelled by the new

series.

To show that [15] adequately models resonances we now choose an index with
a large real part and small imaginary or absorptive component. Figure 3 is a diagram of

Qez: as calculated by Mie theory and the new series [15] to fourth order, for an index of
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FIGURE 1 - Three series for Q,., normalized by the Mie calculation, as a function
of size parameter. Refractive index m = 500 — 500i.

m=500-500%, Sphere

10 "!
sesee Approx.
--------- Rayleigh
107 —— Exaoct Mie

10710~ 107 102 10™ 107 07 16"
Size Parameter X

FIGURE 2 - Q.. as calculated by Mie theory, the new series {15] and Rayleigh.
Refractive index m = 500 — 500i.
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Sphere, m=100-10"%
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FIGURE 3 - Q. as calculated by Mie theory and the new series [15] for an index
of 100 — 1076;.

Water 3.3 GHz Sphere
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FIGURE 4 - Q.r: for water spheres at 3.3 GHz. Refractive index m = 8.743 ~ 0.6409i.
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Water 9.4 GHz Sphere
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FIGURE 5 - Q. for water spheres at 9.4 GHz. Refractive index m = 8.075 — 1.824i.

Water 3.3 GHz, Aspect 2
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FIGURE 6 - Q.r: for water spheroids, r = 2, at 3.3 GHz. Refractive index m =
8.743 — 0.6409i.
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Water 9.4 GHz. Aspect 2
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FIGURE 7 - Q. for water spheroids, r = 2, at 9.4 GHz. Refractive index m =
8.075 — 1.824i.
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&

100 —-10-%i. Although this index is extreme and not physical, it is used here to demonstrate
that [15] is still valid for such unusual cases. This emphasizes that [15] applies to arbitrary
indices for small z. Notice that not all resonances are modelled. This is because the higher

order Mie coefficients, a,, and b,, where n > 1, have not been used in this approximation of

Qezt .

The effect of using the sixth order expansion instead of the fourth order one can be
seen in Figs. 4 and 5. The cases are Q. for water at 3.3 GHz and 9.4 GHz, respectively.
It can be seen that the sixth order corrects for both amplitude and skewness around the
resonances. Evidently, higher order expansion would improve the accuracy further. It is

interesting that the fourth order captures most of the detail, even around the resonances.
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Figures 6 and 7 are the same cases as for the previous two diagrams except that
prolate spheroids, with an aspect ratio 2, are considered instead of spheres. The exact
calculations are performed using the T-Matrix method (Ref. 6). Also the size parameter z
has been replaced by the semi-minor axis b. As expected, the features are similar but many
significant changes can be observed. Relative amplitudes and locations of the resonances
bave changed as well as the underlying trend in the curves. The agreement. while not
excellent, is still remarkable because of the simplicity of the series compared with the exact
calculation for such a large optical size. This large optical size almost makes the T-matrix

ill-conditioned. No such problem occurs for the series.

Figures 8 and 9 are similar to Figs. 6 and 7 but now oblate spheroids of aspect 0.5
are considered. The results are similar to the prolate cases for both @.;; and the degree of

agreement between the T-Matrix calculation and our approximation.

Figure 10 is a comparison between the approximation, T-Matrix and the classical
Rayleigh. It consists of a calculation of Q.;; from a 1.5 aspect ratio, randomly oriented,
amorphous carbon, prolate spheroid, at 94 GHz. This could be potentially a part of a model
for millimeter-wave propagation through a soot plume. Since both the real and imaginary
part of the refractive index (m = 50 — 5Gi) is very high, the T-Matrix calculation could be
unreliable. Indeed, for higher values of b the T-Matrix code will produce negative values of
Qezt- Up to about b = 0.2 the code is accurate enough for our purposes since the backscatter

efficiency and absorption efficiency behave as expected up to this point (when compared
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Water 3.3 GHz, Aspect 5
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FIGURE 8 - Q. for water spheroids, r = 0.5, at 3.3 GHz. Refractive index m =
8.743 — 0.6409i.

Water 9.4 GHz, Aspect 5
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FIGURE 9 - Q.. for water spheroids, r = 0.5, at 9.4 GHz. Refractive index m =
8.075 ~ 1.824i.
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Amorphous Carbon 94 GHz. Aspect 15
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FIGURE 10 - Q.r: for amorphous carbon, r = 1.5, at 94 GHz. Refractive index

m = 50 — 50i.
with equivalent volume spheres). It is known that these two efficiencies are more sensitive
to numerical instabilities than the extinction efficiency. Keeping this in mind, the new
approximation agrees with the T-Matrix calculation to a substantial degree while the classic

Rayleigh series does not. This is mainly due to the inclusion of the magnetic dipole terms.

The next example is a model of extinction by randomly oriented copper flakes in
the infrared (m = 35— 35i). An oblate spheroid with an aspect ratio of 0.333 was used. For
this index, lower aspect ratios could not be considered since the T-Matrix will not produce
usable results and hence no comparison could be made. Q.;; for this case is shown in Fig.
11. Again, caution is required since the T-Matrix for b > .25 begins to decrease rapidly

and will zo negative, as in the previous case. Again, as in the previous figure, the new
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approximation is correct in both form and magnitude as opposed to the Rayleigh series.

As a final example we will use the high-temperature superconductor YBa,CuzOr_¢
at 77 K. For this material and temperature the refractive index can be computed from the
model presented in Ref. 9. At 10 GHz we calculate m = 1.2-17683i. The next three figures.
Figs. 12-14, show Q.. for a sphere, an aspect ratio 10 prolate spheroid and an aspect ratio
0.1 oblate spheroid, respectively. As usual, the spheroids are rando.nly oriented. In the
case of the sphere the exact Mie calculation is given. For the spheroids, no exact solution is
known. The large deviations from the Rayleigh in all three cases is, as in Fig. 2, ascribable
to absorption. Notice that for the largest z shown, Q.z¢ is close to the value predicted by
the Rayleigh series. Although it is not clear from these diagrams, Q.. becomes equal to
the Rayleigh series, for this range of z, as the eccentricity goes to 1. This is readily seen
from [39] and [40)} since as e — 1, L; — 0 (prolates) or Ly — 0 (oblates) and & — oo and
U; — 0. Thus the electric dipole term dominates the magnetic term. This dominance is
the weakest in the case of spheres in which the electric dipole term is only four times the

value of the magnetic term (see Fig. 1).

It is evident from the above calculations that it is possible to obtain series for the
efficiencies without consideration of optical size, for spheres, spheroids and infinite cylinders.
The accuracy of the series for the spheroid would improve if the correct expressions for the

spheroidal “Mie” coefficients were used. However, the required spheroidal wave functions
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Copper, Infrared, Aspect 0333
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FIGURE 11 - Q. for copper oblate spheroids, r = 0.333, in the infrared. Refractive
index m = 35 — 35i.

High T. YBCO, 10 GHz, Sphere
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FIGURE 12 - Q. for spheres of YBa;CuzO7_s at 77°K, r = 1, at 10 GHz. Refrac-
tive index m = 1.2 — 17683i.
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FIGURE 13 - Q. for spheroids of YBa;Cu3O7_5 at 77°K, r = 10, at 10 GHz.
Refractive index m = 1.2 — 17683i.
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Refractive index m = 1.2 — 17683i.
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would lead to complex expressions for £, and #,,. Small-particle phase functions can also

be computed for arbitrary iudices by using the same material transformed series.

4.0 CONCLUSIONS AND REMARKS

We have derived a series that removes the optical size constraint that is inherent in
both the Rayleigh and Thomson approximations. This series has been applied to spheres
and, in an approximate way, to spheroids. Comparison of the new series with the exact Mie
formalism shows excellent agreement. A similar comparison between the T-Matrix method
and the randomly oriented spheroid series shows that the agreement is not as good as in
the case for spheres. However, a substantial portion of the underlying structure, and hence

physics, is being modelled correctly.

Combining this approach with our previously described techniques (Refs. 5 and
10) for approximating extinction, scattering and absorption efficiencies, we have obtained
simple formulae for arbitrary materials, particle sizes and aspect ratios. For the first time,
estimations of the extinction efficiency for small, highly refractive, elongated, spheroidal
particles can be obtained. Since the phase function for small particles is simply related
to the first scattering terms, it can also now be obtained for cases that were previously
intractable. This gives us the capability to model realistic modern battlefield obscurants as

well as radar propagation through rain.
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